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Collision-induced and photoinduced electronically diabatic transitions in polyatomic systems are described,
starting with an eikonal representation of the molecular wave function and developing a self-consistent eikonal
approximation for short deBroglie wavelengths. The approach provides state-to-state transition amplitudes
for electronic excitation without requiring any preliminary knowledge of the nature of transitions between
potential energy surfaces. The formalism has some similarities to recent semiclassical treatments using the
initial value representation. It has been applied to the electronically diabatic dissociatirt-GiH— CHs

+ I induced by absorption of UV light using previously introduced potential energy surfaces and couplings
to compare with accurate quantal results. Results for the model are given for branching ratios in the formation
of I and I', and for the final distribution of vibrational states of €fér two light wavelengths.

1. Introduction CHGl. It has some similarities to a recent semiclassical treatment
of nonadiabatic photodissociatiéh.

A purpose of this contribution is to focus on our intermediate
semiclassical approach, between the straightforward use of
classical trajectories with surface hopping and sampling of initial
and final values$;®? and the initial value representations with
propagation of trajectories and Jacobi&hsnd integration over
initial conditions2%-31.34Qur calculations have given branching
ratios accurate to within about 10% and required only tb0
10* trajectories, instead of the much larger numbers in more
accurate IVR studies. It appears to be a useful compromise when
high accuracy is not needed for state-to-state probabilities, as
can also be found in recent comparisons of meti&df.

The photodissociation of polyatomic molecules has been
studied with fully quantum mechanical and semiclassical
methods. Whereas quantal methods are in principle the most
accurate®®3?in practice they are limited to models with only a
ew degrees of freedom for the atomic motions. In addition to

Hal, the triatomic ICN has also been studied in détsitand
would be a good subject for comparisons. Larger molecules have
been the subject of theoretical and experimental comparisons
and could serve as additional subjects of study with the
semiclassical method we are considefihtf The CHl molecule
has continued to serve as an excellent test case for various
computational treatments. This is in part because it can be
modeled as a pseudotriatomic. Early theoretical treatments were
limited to two degrees of freedom for nuclear motions and one
dexcited dissociative state. More recent work has included two
coupled dissociative potentidfs*®> and more that two degrees
of freedon®® In the present study the formalism is applied in a
model with semiempirical potential energy surfaces, including
the same two excited dissociative electronic states, to investigate
the suitability of the self-consistent eikonal treatment to ac-
curately calculate state-to-state cross sections and branching
ratios.

In the next section, molecular wave functions are expressed
T Part of the special issue “William H. Miller Festschrift”. in the for.ma”y e).(aCt eikonal r.epre'sentation and are thgn
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Semiclassical methods provide a computationally practical
approach for molecular systems with many atomic degrees of
freedom and can be readily implemented for phenomena
involving only one electronic state (usually the ground state),
frequently giving quite accurate results.The semiclassical
method is less obviously implemented for several coupled
electronic potential energy surfaces, because in this case it is
necessary to consistently treat the coupling of electronic
probability amplitudes and nuclear motions, and several ap-
proaches have been developed for this purgoseThis has
also been our motivation for the early development of a
selfconsistent eikonal (SCE) approximatitnyhich we have
applied to collision-induced and photoinduced phenomena. The
approach has some features in common with cellular methods
and the initial value representation for electronically nonadia-
batic dynamic® in that it involves sums over initial conditions.

In our work, trajectories and mechanical actions have been use
to construct eikonal wave functions and to calculate transition
amplitudes, as they appear in models of electron transfer in ion-
diatom collisiong! inelastic atom-atom collisiong223 and
atom—diatomic energy transf& and more recently in a first-
principles treatment of quantum dynamics of diabatic collisions
combining the eikonal treatment with time-dependent many-
electron theory>~27 The approach provides state-to-state transi-
tion amplitudes for electronic excitation without requiring any
preliminary knowledge of the nature of transitions between
potential energy surfaces. It was also applied to the photoinduce
break-up of the €1 bond in CH;I282°to describe the dissocia-
tive dynamics on a single excited potential energy surface. The
results for partial and total cross sections from that model
calculation compared well, at all light wavelengths, with exact
wave packet calculatior®8.The formalism has been extended
to treat several excited electronic states and will be summarized
before it is applied to the electronically diabatic dissociation of
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in two ways: internal states are expressed as exponentials in electronic states as they occur when a molecule M is excited
way consistent with the eikonal representation; and transition by visible or UV light and breaks up into fragments-A X.
integrals are obtained from biased sampling of initial conditions. We concentrate on the scattering molecular states, because
Section 3 derives expressions for photodissociation crossbound states can be readily generated for low vibrational
sections of polyatomics in terms of matrix elements of an electric quantum numbers. The initial molecular scattering states
dipole operator between an initially bound state and a final W(rj&)(Q; p1) whereps is an initial relative momentuny, = (I,

scattering state, and section 4 gives results for a model of they,), andT is a final electronic state, can always be written as
photodissociation CHl + ¢ — CH3z + | induced by absorption

of photons of UV light. YEAQ: Py = 2£2(Q; py) eXPEES,(Q; P (5)
2 . The Self-Consistent Eikonal Treatment where 7£(Q; p1) is in general complex an&(Q; py) is a

A. The Self-Consistent Eikonal RepresentationA molecule common eikonal function independent bf to be defined.
M is described here in terms of its electronic variabfeand Dropping the labelst, o, andp temporarily, we shall use a
nuclear position coordinaté3. The molecular Hamiltoniarkiy, matrix notation with row and column indices, and wave
contains the kinetic energy operatér of the nuclei, the functions arranged in columns so that eq 5 becomes
electronic HamiltonianHq, for fixed nuclear positions, and
spin—orbit coupling,Hso, for electrons in the molecule, so that, Y(Q; py) = x(Q) expliS(Q)/A] (6)
using mass scaled nuclear positions with mass pararigter

wherey is a column matrix with elemenjg«(Q; p1). Replacing

Hy = K+ Hg eq 6 in eq 4 withG = 0, we find
K = — h%(8/3Q)%/(2M 2
(0/3Q)7(2M) [i(—ha +3—S) +HQ—E]X(Q)=0 7)
N e 2M\i0Q 90
Ao =H% + Aso 1)

Writing this asFy = 0, whereF is an operator, multiplying
with the Hamiltonian operators applying to functions of the on the left by the row', and adding the adjoint of the result,
electronic variables. We want to solve the time independent we have that
Schroedinger equatioilfy — E)|W= 0 for the molecular states
P(X, Q) = X|¥(Q)Owith total energyE, where we make (2M) Y(090Q)? + V,(350Q, Q) = E (8)
explicit the nuclear coordinates and use a bracket notation for
state functions of electronic variables. We introduce a basis of PPN iR ay\t + oy
Ng electronic statesbr(X; Q) = IX|I; QDwith electronic  Vqu(P, Q)= (¢2) "y Hox + 5P+ [(BQ) X=X 50~
quantum numbersI’, that are parametrically dependent on
nuclear positions. Molecular states are expanded in this h_zl 3_2X_ ! Ta_zx_
basis as 2M 2 2| XX 2 ©)

aQ aQ

|W(Q)= Z|F; QW r(Q) (2) where we have defined the multidimensional momenRim
090Q. Equation 8 has the form of the time-independent
. . . Hamilton—Jacobi equation for the actid It can be solved by
where the expansion coefficients are amplitudes of nuclear iye method of characteristics introducing a time paranieted
motion. This transforms the Schroedinger equation the functionsP(t) and Q(t), which are solutions of

2 2 —
[_ ;_M ( % ) . E] Q)= 0 @) Hqy = PPI2M) + Vo (P, Q)
dQ/dt = aH,,/oP
into the matrix differential equation
dP/dt = —oH,,/9Q (20)
1A 2

{ml' i9Q + G(Q)] T Hq— E}|1/}(Q)D= 0 Here Vg, can be interpreted as an effective quantal potential
andHg, as the corresponding effective Hamiltonian, dependent

G(Q) = [B" Q‘ @ r: Q[]] (4) on the variable® andQ and the function®'y/0Q", r = 0, 1,
19Q 2, which leads to coupled equations for trajectories and

electronic amplitudes that must be solved self-consistently. The
action functionsS@Q) can be obtained from the momenta. They
are given by the line integrals

whereHqg and y are squaréNg x Ng and columnNg x 1
matrices representing a Hamiltonian and nuclear stagethe
identity matrix, andG(Q) is the momentum coupling matrix
that describes the effect of electron drag by the nuclear motions.
The momentum couplings can be rem(?vei/j by a transformation Q) =8Qy) + fQQl dQ-P (11)
of the original electronic basis set to a strictly diabatic (d) or
“P-representatiorf®47to simplify the treatment of the dynamics, where Q; = Q(t;) and P, = P(t;) are chosen at the initial
in which case we can s&@(Q) = 0. We assume in what  timet;.
follows that this has been done, and omit the (d) index. B. The Self-Consistent Eikonal Approximation.We must

We proceed by defining an eikonal representation of the total yet obtain the equations fgfQ). This is greatly simplified when
molecular wave functions, and developing an eikonal ap- a short wavelength approximation is valid so that gradients of
proximation valid for short deBroglie wavelengths, generated the preexponential functions can be neglected compared to
in such a way that it is possible to deal with transitions between deBroglie wavenumbersi21. In this case we have that
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<2 and |2 | < 2

|—|/ | and | (12)
9Q?

Q aQ

Micha and Stodden
F.(Q) = exp{i [ dtW[Q(t)/A}A,(®
= exp{i [ dt'V [Q(t)/A}

Using these inequalities, eqs 7 and 8 are approximated by the

convenient nonlinear differential equation

P h o

M i 0Q
WQ) =
V(Q) =

uQ) =

IW(Q)[ 2(Q) =

V(Q) +iU(Q)
O Hox

h 9
2M 3Q

+Ho -

P (13)

with the functionsP(t) and Q(t) given by

dP/dt = —aV/aQ

dQ/dt = PIM (14)

To specify boundary conditions, we reintroduce indices and
recall that in photodissociation we need scattering wave
functions y{) with incoming wave asymptotic forms that
develop from the free statg". In the center-of-mass frame we
have

Yo(Q; py) = (271)* exp(ip, - rH)u,(Q)

Q)= TrQ) RIS QM (15)

x exp{ — [, dtU [QEIAIAL() (19)
andH; = Hg(t), we find that the magnitude &f changes with
the divergence of streamlines, as it contains the real integrand
U/A in the second exponent. This exponential factor can be
expressed asl{J;) V223 whereJ is the Jacobian of a transfor-
mation from spac®) to trajectory variablest(Q;), with Q; a
collection of coordinate values &t Equation 13 gives the set
of coupled ordinary differential equations
hd

+ HJA (1) = 20
(f gt HJA = (20)
for the column matrixA(t), which satisfies the simple initial
conditionsAy(t) = I, From the hermitian property d¢f, one
finds AT, ()Ay(t) = I, and as a result,

V(Q) =AIHA, =V, (21)
with Vi, = Er,(Q1). Equation 20 is the standard one for the
time-dependent Schdinger equation with a hermitian Hamil-
tonian in a basis of electronic states.

The procedure required to obtaq'mf;)(Q; p1) is now clear.
One must solve eqs 14 and 20 simultaneously, to obtain
solutions in which the nuclear motions and electronic transitions

)
where we have separated the coordinates into the relative vecto@'® Self-consistently coupled. The wave functipfy can be

positionr and the remaining internal coordinat®s and have
written the bound state, of the fragments as a sum of eikonal-
like exponentials. We then find

P2(Q; py) = Z%&(Q) expliSy(Q)/A]

SQh=p, 1 +S.(Q)
104Q) = @) "y Q)

with p? + |P'|2 = (P92 = 2M [E — V(Q)], wherer andQ' are
in regions with vanishing couplings, ang® is the total
momentum in those regions.

To account for these free-motion conditions, we define new
amplitudes within a column matrik, of functions by means
of

(16)

¥.(Q) = Zxag(Q) expliS,(Q)/A]

2ae(Q) = %o QFo(Q) (17)
so that at = t; we find
Fa;(Ql) = [Orral =14 (18)

whereT’, signifies [aI'x); Faz atrq contairs a 1 in thel'y
position and zeroes elsewhere.

Equation 13 and the initial condition attake simple forms
when use is made of the dependencé&obn time. Dropping
temporarily the index;, eq 14 givesR/M) - (8/0Q) = (d/ck).
Further defining

reconstructed from eqs 5, 17, and

S.(Q) =8(Q) + 3 (dr - p+dQ - P)

=py 1 +S,(Q) +AS(r) + AS (Q)
AS(r) = [1dr - (p—py)

AS,(Q)= [, dQ - P (22)
Here the third line gives the shift of the action for relative
motion, which goes to zero far > r; — o, and the last line
gives the shift of the action for internal motion.

From egs 6 and 17, the full eikonal wave function takes the
form, in a column notation,

DQ= Z%aC(Ql)Fag(Q) exp(iS,(Q)/h}  (23)

where we have restored tlieindex.

It is of interest that if one decomposes the elements of
into their real and imaginary parts by means of

_ -2 :
AFa - (Zh) (xFa + IYFa) (24)

one finds that theXr, and Yr, components behave like
coordinate and momentum variables whose time-derivatives
follow from the Hamiltonian equations, with the Hamiltonian
H(P, Q, X, Y) of eq 10 considered now a function of all the

indicated arguments. This provides an alternative, purely
Hamiltonian treatment of the dynamics of coupled electronic
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and nuclear motiond2! which we have used in calculations of
ion-diatomic collisiongt

3. Photodissociation Cross Sections

Photodissociation cross sections can be obtained from the

matrix elements of the dipole vector componé&at which is

an operator on electronic and nuclear variables. The matrix

elements for the initial electronic stafe= 1 with vibrational
guantum numbers; take the formo

Dy = Z < ’/J(r;)(pf)|(Da)F1|1/)1n1>
(D) = < [;QID,|1;Q> (25)
where the initial molecular staids given by|1; Q > ¥n,(Q)

insofar as the initial electronic state is5= 1, andy() is a
scattering state for final relative momentum and with

incoming wave boundary conditions. Hence, the second eq 25
gives the transition dipole between the electronic states 1 and

T', which is an operator on the nuclear variables. The explicit
form of Dy in terms of a multiple integral is

Dy = Z J 9Q ¥1)(Q: PYID(Qlry Y10, (Q) (26)

with 1, the nuclear bound state in the center-of-mass frame,
and I/J(r:x) given by the eikonal approximation of the previous
section. This integral may be rewritten in a way convenient for
calculations, in terms of new variables.

At the timety, with ry outside the interaction region, we can
write (in Cartesian coordinates with tlzeaxis parallel tops),
r1 = (bcosps, bsing,, z1) andp; = (0O, O, pr), whereb is the
impact parameter for the final scattering state g@nads the
azimuthal angle of relative motion & Next, instead of the
internal momenta and positionB;Q), we introduce internal
action and angle variablek {w;) with the actions; determined
by the initial internal energies. Th&p = Q(t; b, ¢1, z1, 11, Wy),
and one can choose the argument®offor fixed z, as new
variables. The multiple integral in eq 26 may be rewritten in
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Equation 27 gives a function af that must be averaged over
values betweenr, andz,. Comparing the eikonal wave function
constructed from trajectories starting at the two arguménts
= (z», Qp) and Qp = (z, Qp) in the asymptotic region, one
finds that their phases differ by

A=[py - (rp—r)+ [RdQ-PI/A  (29)

The first term is common to all trajectories irrespective of
the choice olQ;, whereas the second term is the internal action
accumulated betweeny and z,. The latter can be set equal to
h(N + 9), with N an integer an@ = 0 or 1/2, by proper choice
of za andz, and, again irrespective of the value@f. ThenDy,
oscillates asymptotically with a period of length, — z,| or
2|20 — ).

The photodissociation cross sections can be obtained averag-
ing over these periods by means of

do;;

2 1
0 h_cpfimgw)z

1z, — 7]

whereg(w) = i[hw/(2¢0)]Y2, andps = [2M(En, + ho — Ey)]Y2
is the final relative momentum for the transition.

S dz|Dgl(z)* (30)

4. Model and Results for CHsl

A. The Model. The process of interest starts with the £LH
molecule in its ground electronic and vibrational state absorbing
light (a photon) of frequency to get excited to staté€; and
3Qo from which it dissociates as

CHyl + ¢(v) = CHy + I(?Ps),)

— CH; + 1%( 2|31/2) (31)
where CH is a planar radical. The GHmolecule is modeled

as a collinear three-body system made up of C, I, and the three
H atoms constrained to a plane perpendicular to th iibnd.

In this model there are only two coordinates describing the
vibrational motions and dissociatiofR, the distance from | to

terms of these new variables with a Jacobian transformation tothe center of mass of GHandr, the distance between the

obtain
Dy = Z J dtdbdg,dw,(r, 6, ¢, Q' t, b, ¢y, W) x

QP Do Q1 ¥1n, (Q) (27)

carbon and the plane of the three hydrogen atoms. The initial
ground vibrational state is designated ag:() = (0,0), with
one of the quantum numbers referring to the umbrella mode
where the three H atoms remain on a plane and this vibrates
with respect to the C atom, and corresponding to the final
vibrational quantum number; for the two-body model of CH

The potential energy surfaces corresponding to the three

whereJis the Jacobian determinant and we have used sphericalelectronic state¥ = 0, 1, 2 of CHl are designated byqo for

coordinates for. This equation is very convenient for compu-
tational work. The integral can be calculated starting with chosen
values ofb, ¢1, zz andw; and adding ovet as one integrates
the equations of motion. For a fixed, this must be repeated
and the results added for several sets of initial variatideg(

the bound ground stat¥;; for the 3Qq;+ state going asymptoti-
cally to CH; + 1", andV»; for the1Q; state going asymptotically
to CHs + | after a crossing. These and their diabatic coupling
Vo1 have been constructed semiempirically in previous similar
model studie$34* The transition dipole function®rr(R) =

w1) as needed to obtain a converged result. To carry out the Dy, Dy, were also constructed from experimental informafion.

integration overvs, it is sometimes advantageous to incorporate
the factory®(Q) of eq 17 in a biased sampling of initial internal
coordinates. For example, from eq 16 for one internal variable
this is accomplished changing;wo a new variable

YorWy) = [ 0" dW' [, [QW)]]

with a maximumyy max for wi = 27. In this way, when one
samplegy at equal intervals one is choosing mevevalues in
the regions wher¢y,(Qy)| is largest.

(28)

Here we use the same functions, to compare our results, only
with regard to the dynamics of photodissociation. The initial
vibrational state of Ckl was written as a product of harmonic
oscillator functions, as commonly doffeand the final vibra-
tional state of CH was also treated as harmonic.

The eikonal treatment with the two variabl®s= (R, r) has
been described in detail in reference 28, and will only be
summarized. Integration of the trajectory equations gives the
functionsR(t), r(t), P(t), p(t), and JR(t), r(t)], which depend
parametrically on the valuds, rq, P31, p; att;. These are chosen
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to satisfy energy conservation, with = P; the final relative CH,[, 248 nm I*
momentum,p; andr; related by the phase space trajectory of 1 ‘

the C—Hgz harmonic oscillatorR; chosen to be large, amd = 0o | )
asin(w,) with wy an angle variable to be chosen between 0 and ' e—oSCE
2. Introducing the Jacobialft,wy) = a(R,r)/a(t,wy) for the Rr) 08| bra G &S,
— (tw;) transformation, the preexponential function in the
eikonal wave function is

0.7

2 1) = 7213913 W)l V2 expl—u(t, w)/2]A® W) (32)

where the subindex 1 refers to valuestaty; contains the
vibrational states(r1), andu = arg(J) — arg(Jy) is a trajectory
index. The matrixA has two components corresponding to the
stated” = 1,2 and satisfies a 2 matrix differential equation

in t. Finally, transition integrals are obtained integrating over
time along trajectories, using the transformation

Normalized CSN for Excited T

4 5
f der |U(r1) F(R, r) — Vibrational Quantum Number of CH,
f dtdw, 3(t, wy)u(ry) FIR(, wy), r(t, wy)] (33) CH,L, 266 nm [*
1.0 T T T
which is constructed as a sum over discrete valuesvof o—o SCE

. . . . . . 09 e
Calculations were done by numerical integration with a predic- frnG &S

tor-corrector sequence with variable step size. In all cases, only
a very small number of trajectories (of the order of 1000) were
needed to obtain the transition integrals to the desired accuracy.

The quantities related to experiments are the relative values
of integral photodissociation cross sections for the various
products in their electronic and vibrational states, which can
be obtained from our theory as state-to-state cross sections.
Adding over final vibrational states of GHit is also possible
to obtain total integral cross sectiomg into the two final
electronic states= g,e of I and I, from which branching ratios
Rs = od(0g + o¢) are found so thaRe + Ry = 1.

B. Branching Ratios and Partial Cross SectionsResults
for the dominant branching rati&e, for production of 1, were “o I 2 3
found in our calculations to equal 0.63 and 0.71 for the two Vibrational Quantum Number of CH,
dissociation wavelengthis= 266 and 248 nm, respectively, t0  Figure 1. Partial photodissociation cross section for production of
be compared to the full quantum theoretical results of 0.61 and excited iodine vs final vibrational quantum number of the ;Githte
0.81. We therefore find that at 266 nm there is excellent for the umbrella mode: (a) for a photon wavelength of 248 nm; (b)
agreement with the quantal result, while the SCE approximation for a photon wavelength of 266 nm.
is 12% lower at 248 nm. .

The other comparison of interest is the distribution of final the lower pho'Fon energy (2_66 .nm) is also to be e>.(pected,
vibrational states of the GHragment. Our previous work using ~ P€cause this gives a lower kinetic energy at the crossing and a
only one excited potential surface compared very well with exact SNOrt wavelength approximation is then less accurate. Overall,
quantum result& but the addition of a second excited potential NOWeVer, the SCE results have given quite accurate branching
surface to the model has led to different vibrational distributions "2ti0s for both I and’, and good distributions of final vibrational
in the full quantum result¥ In Figures 1 and 2, the partial ~ States for the predominant product speciés, |
cross sections from our treatment (SCE) and that of ref 44
(G. & S.) are compared for the two dissociation products, with
our results normalized to give the same area under the curves In this contribution, incoming wave scattering states needed
so that the values d®. are the same for both sets of numbers. in photodissociation have been obtained in an eikonal ap-
Panels (a) and (b) of Figure 1 show that when the final product proximation that neglects terms slowly varying over the
is I", the present results are nearly identical to the full quantal deBroglie wavelengths of nuclear motions. Doing this consis-
results. For the | final product, for which cross sections are small tently and starting with an eikonal representation of the wave
atv = 0 as shown in panels (a) and (b) of Figure 2, the trends function, we obtained coupled differential equations for the
with increasing quantum numbers and magnitudes are generallynuclear motions and the time-dependence of the electronic
well reproduced, except for small It is not surprising that the ~ amplitudes, which must be solved simultaneously. Their bound-
largest discrepancy occurs for | and smallThis is because  ary conditions result from energy conservation and from the
the wave function amplitude starting on the potential and asymptotic form of the wave functions when the internal ones
leading to | must evolve from an initial excitation through the are also given in eikonal, or semiclassical, form. This leads to
potentials crossing along a seam, which is sensitive to semiclas-self-consistent eikonal wave functions for each of the electronic
sical approximations; also, the eikonal approximation for low states of the polyatomic system. With this information, one can
vibrational state = 0,1 is less accurate than for the higher  calculate the needed dipole transition integrals. A change of
values. The fact that the more significant deviation occurs at variables allows calculation of state-to-state cross sections from

Normalized CSN for Excited [

I
[

5. Conclusion
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CH,L, 248 nm I semiclassical representation of the= 0 final state and to add
10 ‘ ‘ more initial values of the vibrational coordinate Applications
0o | e—oSCE | to similar polyatomic systems, such as ICN, could be done with
G &S the same approach. It is encouraging that only a very small
08 ] number of trajectories (of the order of 1000) were needed to

obtain the transition integrals to the desired accuracy. Even if
a factor of 20 more trajectories might be needed to include

07

Sos| ] rotational motions, our approach provides an alternative to the
20.5, ] 10° to 1@ trajectories and Jacobians needed for the more
= accurate calculations with initial value representations.

Soa} ] Perhaps the biggest advantage of the present SCE approach
g ol ] is that it appears applicable to the dissociation of large

polyatomic with no modifications in the computational proce-
dure. It can deal with several vibrational degrees of freedom as

02t S R

¥ e 1 well as rotational ones, and it can also describe changes in the
conformation of the excited polyatomic. On the other hand, the
004 1 2 s 2 5 eikonal approximation can describe only processes that occur
Vibrational Quantum Number of CH, in classically allowed regions of the effective potenigQ),
i.e., in regions accessible to trajectory bundles. It also restricts
CH,l, 266 nm I the initial conditions to those allowed by the form of the

1.0

asymptotic wave functions, so that the initial positions must
fall within the classical turning points of the initial internal
motions. Physical quantities of interest are, however, sums over
many initial conditions, and errors due to exclusion of classical
07 1 forbidden regions are frequently small because only small
fractions of the trajectories are likely to originate in these regions
for most applications to photodesorption and collisional energy
transfer.

09

0.8

06

0.5
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Normalized CSN for I

Acknowledgment. It is a pleasure to dedicate this paper to
William H. Miller. The authors thank the National Science
Foundation and the Office of Naval Research for partial support
of this work. Part of this work was done while one of us
(D.A.M.) was a visiting scientist at the Harvard-Smithsonian
Institute for Theoretical Atomic and Molecular Physics, sup-
5 ported by the NSF.

03
02

0.1 1

0.0

0 1 2 3
Vibrational Quantum Number of CH,
Figure 2. Partial photodissociation cross section for production of References and Notes
ground-state iodine vs final vibrational quantum number of theg CH .
state for the umbrella mode: (a) for a photon wavelength of 248 nm; (1) Miller, W. H. Adv. Chem Phys1976 30, 77.
b) for a photon wavelength of 266 nm (2) Marcus, R.J. Chem. Phys1971 54, 3965.
( ) (3) Meyer, H.-D. and Miller, W. HJ. Chem. Phys1979 70, 3214.
; ; ; ; ; (4) Child, M. S.Semiclassical Methods in Molecular Scattering and
information on nuqlear classical trajectorlelzs.. The procedure SpectroscopyChid M. S.. Ed.: Reidel: Dordrecht, 1980: p 127.
allows f_or pha_se mterference, bgcause it incorporates the (5 coalson, R. DAdv. Chem. Phys1989 73, 605.
mechanical actions in the phase of integrands as one adds over (6) Tully, J. C.J. Chem. Phys199q 93, 1061.
the time variable. The integration of differential equations gg E'”'”gKv% 13- Eﬁmp“t.srf"lfg‘gi‘){g?‘éﬂfs%l 63, 38.
. i ay, K. G.J. Chem. Phy: .
requires only knowledge of the mltlal gondltlons, so that there (9) Cao, J., Voth, G. AJ. Chem. Phys1994 100, 5106.
is no need to search for those trajectories that would reconstruct (10) Deumens, E.; Diz., A.; Longo, R.; Ohrn, Rev. Mod. Phys1992

a given final state. Instead, one projects on the desired final 96, 917.

state (11) Coker, D. F.; Xiao, LJ. Chem. Phys1995 102 496.
) L . . (12) Herman, M. FChem. Phys. Lettl995 103 8081.
The application to a model of GHphotodissociation was (13) Campolieti, G.; Brumer, Rl. Chem. Phys1997 107, 791.

done for two purposes: illustration of the method, whichis quite  (14) Nakamura, HAnn. Re. Phys. Chem1997, 48, 299.
simple in its numerical implementation, and a type of initial 5 (15)_Bemfeé5-j-? C'CSOSHG-? Cso_keri D_-a';r '?fsla_ss"ﬁ' ﬁ_‘”g_Qua”tum
variable representation insofar as it requires only choices of Jyga > O Condensed Phase Simulagaierid Scientific: Singapore,
initial conditions; and second for comparison with accurate  (16) Martens, C. C.; Fang, J.-¥. Chem. Phys1997, 106 4918.
quantal calculations with the same potential surfaces. This gave, (17) Makri, N.J. Phys. ChemA 1998 102, 4414.
overall, quite accurate branching ratios and good distributions ~ (18) Micha, D. A.J. Chem. Phys1983 78, 7138.

. ; . . . (19) Heller, E. JJ. Chem. Phys1991, 94, 2723.
of final vibrational states for the predominant product species;  (20) sun, x.; Miller, W. H.J. Chem. Phys1997, 106 916.
in effect, the figures for the partial cross sections, normalized ~ (21) Olson, J. A.; Micha, D. AJ. Chem. Phys1984 80, 2602.
to a scale of 0.61.0, show deviations from accurate quantal gg Sgﬂiﬂ' j m m:gﬂg B- ﬁ gﬂgm Eﬂﬁlggé gg' %ggg-

H 0, : 1 1 3 . . 1 . B . & d .
calculations of the prdqr of 10% for most final vibrational states. (24) Cohen. J. M.: Famini, G. Rnt. J. Quantum Chemi993 S27
The largest deviation is for formation of | and gl = 0) at 527.

266 nm, the most unfavorable case for a semiclassical treatment (25) Micha, D. A.; Runge, KPhys. Re. A 1994 50, 322.
insofar as the relative kinetic energy of the fragments is smaller g% g&cnhgz E}){ ,AMJidf’;‘yg igi@gggi 12%555%-2 022703
and the vibrational state is the lowest. The most likely way o (2g) swaminathan, P. K.; Stodden, C. D.; Icha, D.JAChem. Phys

improve on this should be to start with a more accurate 1989 90, 5501.



2896 J. Phys. Chem. A, Vol. 105, No. 12, 2001

(29) Stodden, C. D. and Micha, D. t. J. Quantum Cherh987 Symp.
21, 239.

(30) Lee, S.Y.; Heller, E. 1. Chem. Phys1982 76, 3035.

(31) Batista, V. S.; Miller, W. HJ. Chem. Phys1998 108 498.

(32) Tully, J. C.; Preston, R. KI. Chem. Physl971 55, 562.

(33) Herman, M. F.; Kluk, EChem. Phys1984 91, 27.

(34) Coronado, E. A; Batista, V. S.; Miller, W. H. Chem. Phy2000
112 5566.

(35) Topaler, M.; Hack, M. D.; Allison, T. C.; Liu, Y.-P.; Mielke, S.

L.; Schewenke, D. W.; Truhlar, D. G. Chem. Phys1997 106, 8699.
(36) Volobuev, Y. L.; Hack, M. D.; Topaler, M. S.; Truhlar, D. G.
Chem. Phys200Q 112 9716.
(37) Tannor, D. J.; Garashchuck, Snu. Re. Phys. Chem200Q 51,
553.

Micha and Stodden

(38) Schinke, R.Photodissociation Dynamics of Small Polyatomic
Molecules Cambridge University Press: Cambridge, England, 1993.

(39) Zhang, J. Z. HTheory and Application of Quantum Molecular
Dynamics World Scientific: Singapore, 1999.

(40) Qian, J.; Williams, C. J.; Tannor, D. J.; Morokuma, X.Chem.
Phys 1994 101, 9597.

(41) Hall, G. E.; Houston, P. LAnnu. Re. Phys. Chem1989 40, 375.

(42) Butler, L. J.Annu. Re. Phys. Chem1998 49, 125.

(43) Shapiro, MJ. Phys. Chem1986 90, 3644.

(44) Guo, H.; Schatz, G. Cl. Chem. Phys199Q 93, 393.

(45) Guo, H.; Schatz, G. C. Chem. Phys1992 96, 6629.

(46) Baer, M.Adv. Chem. Phys1992,82 — Part 2, 187.

(47) Garrett, B. C.; Truhlar, D. GAdv. Theor. Chem1981,6 A, 215.



