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Collision-induced and photoinduced electronically diabatic transitions in polyatomic systems are described,
starting with an eikonal representation of the molecular wave function and developing a self-consistent eikonal
approximation for short deBroglie wavelengths. The approach provides state-to-state transition amplitudes
for electronic excitation without requiring any preliminary knowledge of the nature of transitions between
potential energy surfaces. The formalism has some similarities to recent semiclassical treatments using the
initial value representation. It has been applied to the electronically diabatic dissociation CH3I + φ f CH3

+ I induced by absorption of UV light using previously introduced potential energy surfaces and couplings
to compare with accurate quantal results. Results for the model are given for branching ratios in the formation
of I and I*, and for the final distribution of vibrational states of CH3 for two light wavelengths.

1. Introduction

Semiclassical methods provide a computationally practical
approach for molecular systems with many atomic degrees of
freedom and can be readily implemented for phenomena
involving only one electronic state (usually the ground state),
frequently giving quite accurate results.1,2 The semiclassical
method is less obviously implemented for several coupled
electronic potential energy surfaces, because in this case it is
necessary to consistently treat the coupling of electronic
probability amplitudes and nuclear motions, and several ap-
proaches have been developed for this purpose.3-17 This has
also been our motivation for the early development of a
selfconsistent eikonal (SCE) approximation,18 which we have
applied to collision-induced and photoinduced phenomena. The
approach has some features in common with cellular methods19

and the initial value representation for electronically nonadia-
batic dynamics20 in that it involves sums over initial conditions.
In our work, trajectories and mechanical actions have been used
to construct eikonal wave functions and to calculate transition
amplitudes, as they appear in models of electron transfer in ion-
diatom collisions,21 inelastic atom-atom collisions,22,23 and
atom-diatomic energy transfer24 and more recently in a first-
principles treatment of quantum dynamics of diabatic collisions
combining the eikonal treatment with time-dependent many-
electron theory.25-27 The approach provides state-to-state transi-
tion amplitudes for electronic excitation without requiring any
preliminary knowledge of the nature of transitions between
potential energy surfaces. It was also applied to the photoinduced
break-up of the C-I bond in CH3I28,29 to describe the dissocia-
tive dynamics on a single excited potential energy surface. The
results for partial and total cross sections from that model
calculation compared well, at all light wavelengths, with exact
wave packet calculations.30 The formalism has been extended
to treat several excited electronic states and will be summarized
before it is applied to the electronically diabatic dissociation of

CH3I. It has some similarities to a recent semiclassical treatment
of nonadiabatic photodissociation.31

A purpose of this contribution is to focus on our intermediate
semiclassical approach, between the straightforward use of
classical trajectories with surface hopping and sampling of initial
and final values,6,32 and the initial value representations with
propagation of trajectories and Jacobians,33, and integration over
initial conditions.20,31,34Our calculations have given branching
ratios accurate to within about 10% and required only 103 to
104 trajectories, instead of the much larger numbers in more
accurate IVR studies. It appears to be a useful compromise when
high accuracy is not needed for state-to-state probabilities, as
can also be found in recent comparisons of methods.35-37

The photodissociation of polyatomic molecules has been
studied with fully quantum mechanical and semiclassical
methods. Whereas quantal methods are in principle the most
accurate,38,39 in practice they are limited to models with only a
few degrees of freedom for the atomic motions. In addition to
CH3I, the triatomic ICN has also been studied in detail34,40and
would be a good subject for comparisons. Larger molecules have
been the subject of theoretical and experimental comparisons
and could serve as additional subjects of study with the
semiclassical method we are considering.41,42The CH3I molecule
has continued to serve as an excellent test case for various
computational treatments. This is in part because it can be
modeled as a pseudotriatomic. Early theoretical treatments were
limited to two degrees of freedom for nuclear motions and one
excited dissociative state. More recent work has included two
coupled dissociative potentials43-45 and more that two degrees
of freedom.45 In the present study the formalism is applied in a
model with semiempirical potential energy surfaces, including
the same two excited dissociative electronic states, to investigate
the suitability of the self-consistent eikonal treatment to ac-
curately calculate state-to-state cross sections and branching
ratios.

In the next section, molecular wave functions are expressed
in the formally exact eikonal representation and are then
obtained in an eikonal approximation for short deBroglie
wavelengths. The treatment expands our previous formulation
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in two ways: internal states are expressed as exponentials in a
way consistent with the eikonal representation; and transition
integrals are obtained from biased sampling of initial conditions.
Section 3 derives expressions for photodissociation cross
sections of polyatomics in terms of matrix elements of an electric
dipole operator between an initially bound state and a final
scattering state, and section 4 gives results for a model of the
photodissociation CH3I + φ f CH3 + I induced by absorption
of photonsφ of UV light.

2 . The Self-Consistent Eikonal Treatment

A. The Self-Consistent Eikonal Representation.A molecule
M is described here in terms of its electronic variablesX and
nuclear position coordinatesQ. The molecular Hamiltonian,ĤM,
contains the kinetic energy operatorK̂ of the nuclei, the
electronic Hamiltonian,ĤQ, for fixed nuclear positions, and
spin-orbit coupling,ĤSO, for electrons in the molecule, so that,
using mass scaled nuclear positions with mass parameterM,

with the Hamiltonian operators applying to functions of the
electronic variables. We want to solve the time independent
Schroedinger equation (ĤM - E)|Ψ〉 ) 0 for the molecular states
Ψ(X, Q) ) 〈X|Ψ(Q)〉 with total energyE, where we make
explicit the nuclear coordinates and use a bracket notation for
state functions of electronic variables. We introduce a basis of
NB electronic statesΦΓ(X; Q) ) 〈X|Γ; Q〉 with electronic
quantum numbers,Γ, that are parametrically dependent on
nuclear positions. Molecular states are expanded in this
basis as

where the expansion coefficients are amplitudes of nuclear
motion. This transforms the Schroedinger equation

into the matrix differential equation

where HQ and ψ are squareNB × NB and columnNB × 1
matrices representing a Hamiltonian and nuclear state,I is the
identity matrix, andG(Q) is the momentum coupling matrix
that describes the effect of electron drag by the nuclear motions.
The momentum couplings can be removed by a transformation
of the original electronic basis set to a strictly diabatic (d) or
“P-representation”46,47to simplify the treatment of the dynamics,
in which case we can setG(d)(Q) ) 0. We assume in what
follows that this has been done, and omit the (d) index.

We proceed by defining an eikonal representation of the total
molecular wave functions, and developing an eikonal ap-
proximation valid for short deBroglie wavelengths, generated
in such a way that it is possible to deal with transitions between

electronic states as they occur when a molecule M is excited
by visible or UV light and breaks up into fragments A+ X.
We concentrate on the scattering molecular states, because
bound states can be readily generated for low vibrational
quantum numbers. The initial molecular scattering states
ψΓR

(()(Q; p1) wherep1 is an initial relative momentum,R ) (ΓR,
vR), andΓ is a final electronic state, can always be written as

where øΓR
(()(Q; p1) is in general complex andSR(Q; p1) is a

common eikonal function independent ofΓ, to be defined.
Dropping the labels(, R, andp temporarily, we shall use a
matrix notation with row and column indicesΓ, and wave
functions arranged in columns so that eq 5 becomes

whereø is a column matrix with elementsøΓR(Q; p1). Replacing
eq 6 in eq 4 withG ) 0, we find

Writing this asFø ) 0, whereF is an operator, multiplying
on the left by the rowø†, and adding the adjoint of the result,
we have that

where we have defined the multidimensional momentumP )
∂S/∂Q. Equation 8 has the form of the time-independent
Hamilton-Jacobi equation for the actionS. It can be solved by
the method of characteristics introducing a time parametert and
the functionsP(t) andQ(t), which are solutions of

Here Vqu can be interpreted as an effective quantal potential
andHqu as the corresponding effective Hamiltonian, dependent
on the variablesP andQ and the functions∂røΓ/∂Qr, r ) 0, 1,
2, which leads to coupled equations for trajectories and
electronic amplitudes that must be solved self-consistently. The
action functionsS(Q) can be obtained from the momenta. They
are given by the line integrals

where Q1 ) Q(t1) and P1 ) P(t1) are chosen at the initial
time t1.

B. The Self-Consistent Eikonal Approximation.We must
yet obtain the equations forø(Q). This is greatly simplified when
a short wavelength approximation is valid so that gradients of
the preexponential functions can be neglected compared to
deBroglie wavenumbers 2π/λ. In this case we have that

ĤM ) K̂ + ĤQ

K̂ ) - p2(∂/∂Q)2/(2M)

ĤQ ) ĤQ
0 + ĤSO (1)

|Ψ(Q)〉 ) ∑
Γ

|Γ; Q〉ψΓ(Q) (2)

[- p2

2M( ∂

∂Q)2
+ ĤQ - E]|Ψ(Q)〉 ) 0 (3)

{ 1
2M[Ip

i
∂

∂Q
+ G(Q)]2

+ HQ - E}|ψ(Q)〉 ) 0

G(Q) ) [〈Γ; Q| p
i

∂

∂Q|Γ'; Q〉] (4)

ψΓR
(()(Q; p1) ) øΓR

(()(Q; p1) exp[(iSR(Q; p1)/p] (5)

ψ(Q; p1) ) ø(Q) exp[iS(Q)/p] (6)

[ 1
2M(pi

∂

∂Q
+ ∂S

∂Q)2
+ HQ - E] ø(Q) ) 0 (7)

(2M)-1(∂S/∂Q)2 + Vqu(∂S/∂Q, Q) ) E (8)

Vqu(P, Q) ) (ø†ø)-1 {ø†HQø + ip
2M

P ‚ [( ∂ø
∂Q)†

ø - ø† ∂ø
∂Q] -

p2

2M
1
2 [( ∂

2ø
∂Q2)†

ø + ø† ∂
2ø

∂Q2]} (9)

Hqu ) P.P/(2M) + Vqu(P, Q)

dQ/dt ) ∂Hqu/∂P

dP/dt ) -∂Hqu/∂Q (10)

S(Q) ) S(Q1) + ∫Q1

Q
dQ ‚ P (11)
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Using these inequalities, eqs 7 and 8 are approximated by the
convenient nonlinear differential equation

with the functionsP(t) andQ(t) given by

To specify boundary conditions, we reintroduce indices and
recall that in photodissociation we need scattering wave
functions ψΓR

(-) with incoming wave asymptotic forms that
develop from the free stateψR

0. In the center-of-mass frame we
have

where we have separated the coordinates into the relative vector
positionr and the remaining internal coordinatesQ′ and have
written the bound stateuR of the fragments as a sum of eikonal-
like exponentials. We then find

with p1
2 + |P'|2 ) (P0)2 ) 2M [E - V0(Q)], wherer andQ' are

in regions with vanishing couplings, andP0 is the total
momentum in those regions.

To account for these free-motion conditions, we define new
amplitudes within a column matrixFR of functions by means
of

so that att ) t1 we find

whereΓR signifies (ΓA,ΓX); FRú at r1 contains a 1 in theΓR
position and zeroes elsewhere.

Equation 13 and the initial condition att1 take simple forms
when use is made of the dependence ofQ on time. Dropping
temporarily the indexú, eq 14 gives (P/M) ‚ (∂/∂Q) ) (d/dt).
Further defining

andHt ) HQ(t), we find that the magnitude ofF changes with
the divergence of streamlines, as it contains the real integrand
U/p in the second exponent. This exponential factor can be
expressed as (J/J1)-1/2,23 whereJ is the Jacobian of a transfor-
mation from spaceQ to trajectory variables (t, Qh 1), with Qh 1 a
collection of coordinate values att1. Equation 13 gives the set
of coupled ordinary differential equations

for the column matrixA(t), which satisfies the simple initial
conditionsAR(t) ) IR. From the hermitian property ofH, one
finds A†

R(t)AR(t) ) I , and as a result,

with Vt1 ) EΓf (Q1). Equation 20 is the standard one for the
time-dependent Schro¨dinger equation with a hermitian Hamil-
tonian in a basis of electronic states.

The procedure required to obtainψR
(-)(Q; p1) is now clear.

One must solve eqs 14 and 20 simultaneously, to obtain
solutions in which the nuclear motions and electronic transitions
are self-consistently coupled. The wave functionψΓR

(-) can be
reconstructed from eqs 5, 17, and

Here the third line gives the shift of the action for relative
motion, which goes to zero forr > r1 f ∞, and the last line
gives the shift of the action for internal motion.

From eqs 6 and 17, the full eikonal wave function takes the
form, in a column notation,

where we have restored theú index.
It is of interest that if one decomposes the elements ofAR

into their real and imaginary parts by means of

one finds that theXΓR and YΓR components behave like
coordinate and momentum variables whose time-derivatives
follow from the Hamiltonian equations, with the Hamiltonian
H(P, Q, X, Y) of eq 10 considered now a function of all the
indicated arguments. This provides an alternative, purely
Hamiltonian treatment of the dynamics of coupled electronic

|∂
2øΓ

∂Q2
|/|∂øΓ

∂Q
| , 2π

λ
and|∂øΓ

∂Q
|/|øΓ| , 2π

λ
(12)
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M

‚ p
i

∂
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U(Q) ) p
2M

∂

∂Q
‚ P (13)

dP/dt ) -∂V/∂Q

dQ/dt ) P/M (14)

ψR
0(Q; p1) ) (2πp)3/2 exp(ip1 ‚ r /p)uR(Q')

uR(Q') ) ∑
ú

ø'Rú(Q') exp[iS'Rú(Q')/p] (15)

ψR
0(Q; p1) ) ∑

ú

øRú
0 (Q) exp[iSRú

0 (Q')/p]

SRú
0 (Q)/p ) p1 ‚ r + S'Rú(Q')

øRú
0 (Q) ) (2πp)-3/2ø'Rú(Q') (16)

ψR(Q) ) ∑
ú

øRú(Q) exp[iSRú(Q)/p]

øRú(Q) ) øRú
0 (Q1)FRú(Q) (17)

FRú(Q1) ) [δΓΓR] ) IR (18)

FR(Q) ) exp{i∫t1

t dt'W [Q(t')]/p}AR(t)
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t dt'V [Q(t')]/p}

× exp{-∫t1
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) p1 ‚ r + S'R(Q'1) + ∆SR
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and nuclear motions,3,21 which we have used in calculations of
ion-diatomic collisions.21

3. Photodissociation Cross Sections

Photodissociation cross sections can be obtained from the
matrix elements of the dipole vector componentD̂σ, which is
an operator on electronic and nuclear variables. The matrix
elements for the initial electronic stateΓ ) 1 with vibrational
quantum numbersv1 take the form10

where the initial molecular statei is given by|1; Q > ψln1(Q)
insofar as the initial electronic state isΓ ) 1, andψ(-) is a
scattering state for final relative momentumpf and with
incoming wave boundary conditions. Hence, the second eq 25
gives the transition dipole between the electronic states 1 and
Γ, which is an operator on the nuclear variables. The explicit
form of Dfi in terms of a multiple integral is

with ψ1n1 the nuclear bound state in the center-of-mass frame,
and ψΓR

(-) given by the eikonal approximation of the previous
section. This integral may be rewritten in a way convenient for
calculations, in terms of new variables.

At the timet1, with r1 outside the interaction region, we can
write (in Cartesian coordinates with thez-axis parallel topf),
r1 ) (bcosφ1, bsinφ1, z1) and p1 ) (0, 0, pf), whereb is the
impact parameter for the final scattering state andφ1 is the
azimuthal angle of relative motion att1. Next, instead of the
internal momenta and positions (P′1Q′1), we introduce internal
action and angle variables (I1, w1) with the actionsI1 determined
by the initial internal energies. ThenQ ) Q(t; b, φ1, z1, I1, w1),
and one can choose the arguments ofQ, for fixed z1, as new
variables. The multiple integral in eq 26 may be rewritten in
terms of these new variables with a Jacobian transformation to
obtain

whereJ is the Jacobian determinant and we have used spherical
coordinates forr . This equation is very convenient for compu-
tational work. The integral can be calculated starting with chosen
values ofb, φ1, z1 andw1 and adding overt as one integrates
the equations of motion. For a fixedz1, this must be repeated
and the results added for several sets of initial variables (b, φ1,
w1) as needed to obtain a converged result. To carry out the
integration overw1, it is sometimes advantageous to incorporate
the factorø0(Q1) of eq 17 in a biased sampling of initial internal
coordinates. For example, from eq 16 for one internal variable
this is accomplished changing w1 to a new variable

with a maximumyR,max for w1 ) 2π. In this way, when one
samplesy at equal intervals one is choosing morew1 values in
the regions where|ø′R(Q′1)| is largest.

Equation 27 gives a function ofz1 that must be averaged over
values betweenza andzb. Comparing the eikonal wave function
constructed from trajectories starting at the two argumentsQa

) (za, Q′′0) and Qb ) (zb, Q′′0) in the asymptotic region, one
finds that their phases differ by

The first term is common to all trajectories irrespective of
the choice ofQ′′0, whereas the second term is the internal action
accumulated betweenza andzb. The latter can be set equal to
h(N + δ), with N an integer andδ ) 0 or 1/2, by proper choice
of za andzb and, again irrespective of the value ofQ′′0. ThenDfi

oscillates asymptotically with a period of length|za - zb| or
2|za - zb|.

The photodissociation cross sections can be obtained averag-
ing over these periods by means of

whereg(ω) ) i[pω/(2ε0)]1/2, andpfi ) [2m(E1n1 + pω - ER)]1/2

is the final relative momentum for the transition.

4. Model and Results for CH3I

A. The Model. The process of interest starts with the CH3I
molecule in its ground electronic and vibrational state absorbing
light (a photon) of frequencyν to get excited to states1Q1 and
3Q0 from which it dissociates as

where CH3 is a planar radical. The CH3I molecule is modeled
as a collinear three-body system made up of C, I, and the three
H atoms constrained to a plane perpendicular to the C-I bond.
In this model there are only two coordinates describing the
vibrational motions and dissociation:R, the distance from I to
the center of mass of CH3; and r, the distance between the
carbon and the plane of the three hydrogen atoms. The initial
ground vibrational state is designated as (V1,V2) ) (0,0), with
one of the quantum numbers referring to the umbrella mode
where the three H atoms remain on a plane and this vibrates
with respect to the C atom, and corresponding to the final
vibrational quantum numberV, for the two-body model of CH3.

The potential energy surfaces corresponding to the three
electronic statesΓ ) 0, 1, 2 of CH3I are designated byV00 for
the bound ground state,V11 for the3Q0+ state going asymptoti-
cally to CH3 + I*, andV22 for the1Q1 state going asymptotically
to CH3 + I after a crossing. These and their diabatic coupling
V01 have been constructed semiempirically in previous similar
model studies.43,44 The transition dipole functionsDΓ,Γ'(R) )
D01, D02 were also constructed from experimental information.43

Here we use the same functions, to compare our results, only
with regard to the dynamics of photodissociation. The initial
vibrational state of CH3I was written as a product of harmonic
oscillator functions, as commonly done,30 and the final vibra-
tional state of CH3 was also treated as harmonic.

The eikonal treatment with the two variablesQ ) (R, r) has
been described in detail in reference 28, and will only be
summarized. Integration of the trajectory equations gives the
functionsR(t), r(t), P(t), p(t), andS[R(t), r(t)], which depend
parametrically on the valuesR1, r1, P1, p1 at t1. These are chosen

Dfi ) ∑
Γ

< ψΓR
(-)(pf)|(Dσ)Γ1|ψ1n1

>

(Dσ)Γ1 ) < Γ;Q|D̂σ|1; Q> (25)

Dfi ) ∑
Γ
∫ dQ ψΓR

(-)(Q; pf)*[ Dσ(Q)]Γ1 ψ1n1
(Q) (26)

Dfi ) ∑
Γ
∫ dtdbdφ1dw1J(r, θ, φ, Q'; t, b, φ1, w1) ×

ψΓR
(-)(Q; pf)*[ Dσ(Q)]Γ1 ψ1n1

(Q) (27)

yRú(w1) ) ∫0
w1 dw' |ø'Rú[Q'(w')]| (28)

∆ ) [p1 ‚ (rb - ra) + ∫Qb
Qa dQ' ‚ P'] /p (29)

dσfi

dΩ
) 2π

hc
pfimg(ω)2 1

|zb - za| ∫za

zb dz1|Dfi|(z1)|2 (30)

CH3I + φ(ν) f CH3 + I(2P3/2)

f CH3 + I*( 2P1/2) (31)
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to satisfy energy conservation, withP1 ) Pf the final relative
momentum,p1 and r1 related by the phase space trajectory of
the C-H3 harmonic oscillator,R1 chosen to be large, andr1 )
asin(w1) with w1 an angle variable to be chosen between 0 and
2π. Introducing the JacobianJ(t,w1) ) ∂(R,r)/∂(t,w1) for the (R,r)
f (t,w1) transformation, the preexponential function in the
eikonal wave function is

where the subindex 1 refers to values att1, ø1 contains the
vibrational stateuv(r1), andµ ) arg(J) - arg(J1) is a trajectory
index. The matrixA has two components corresponding to the
statesΓ ) 1,2 and satisfies a 2× 2 matrix differential equation
in t. Finally, transition integrals are obtained integrating over
time along trajectories, using the transformation

which is constructed as a sum over discrete values ofw1.
Calculations were done by numerical integration with a predic-
tor-corrector sequence with variable step size. In all cases, only
a very small number of trajectories (of the order of 1000) were
needed to obtain the transition integrals to the desired accuracy.

The quantities related to experiments are the relative values
of integral photodissociation cross sections for the various
products in their electronic and vibrational states, which can
be obtained from our theory as state-to-state cross sections.
Adding over final vibrational states of CH3, it is also possible
to obtain total integral cross sectionsσs into the two final
electronic statess) g,eof I and I*, from which branching ratios
Rs ) σs/(σg + σe) are found so thatRe + Rg ) 1.

B. Branching Ratios and Partial Cross Sections.Results
for the dominant branching ratio,Re, for production of I*, were
found in our calculations to equal 0.63 and 0.71 for the two
dissociation wavelengthsλ ) 266 and 248 nm, respectively, to
be compared to the full quantum theoretical results of 0.61 and
0.81. We therefore find that at 266 nm there is excellent
agreement with the quantal result, while the SCE approximation
is 12% lower at 248 nm.

The other comparison of interest is the distribution of final
vibrational states of the CH3 fragment. Our previous work using
only one excited potential surface compared very well with exact
quantum results,30 but the addition of a second excited potential
surface to the model has led to different vibrational distributions
in the full quantum results.44 In Figures 1 and 2, the partial
cross sections from our treatment (SCE) and that of ref 44
(G. & S.) are compared for the two dissociation products, with
our results normalized to give the same area under the curves
so that the values ofRe are the same for both sets of numbers.
Panels (a) and (b) of Figure 1 show that when the final product
is I*, the present results are nearly identical to the full quantal
results. For the I final product, for which cross sections are small
at V ) 0 as shown in panels (a) and (b) of Figure 2, the trends
with increasing quantum numbers and magnitudes are generally
well reproduced, except for smallV. It is not surprising that the
largest discrepancy occurs for I and smallV. This is because
the wave function amplitude starting on the potentialV11 and
leading to I must evolve from an initial excitation through the
potentials crossing along a seam, which is sensitive to semiclas-
sical approximations; also, the eikonal approximation for low
vibrational statesV ) 0,1 is less accurate than for the higherV
values. The fact that the more significant deviation occurs at

the lower photon energy (266 nm) is also to be expected,
because this gives a lower kinetic energy at the crossing and a
short wavelength approximation is then less accurate. Overall,
however, the SCE results have given quite accurate branching
ratios for both I and I*, and good distributions of final vibrational
states for the predominant product species, I*.

5. Conclusion

In this contribution, incoming wave scattering states needed
in photodissociation have been obtained in an eikonal ap-
proximation that neglects terms slowly varying over the
deBroglie wavelengths of nuclear motions. Doing this consis-
tently and starting with an eikonal representation of the wave
function, we obtained coupled differential equations for the
nuclear motions and the time-dependence of the electronic
amplitudes, which must be solved simultaneously. Their bound-
ary conditions result from energy conservation and from the
asymptotic form of the wave functions when the internal ones
are also given in eikonal, or semiclassical, form. This leads to
self-consistent eikonal wave functions for each of the electronic
states of the polyatomic system. With this information, one can
calculate the needed dipole transition integrals. A change of
variables allows calculation of state-to-state cross sections from

Figure 1. Partial photodissociation cross section for production of
excited iodine vs final vibrational quantum number of the CH3 state
for the umbrella mode: (a) for a photon wavelength of 248 nm; (b)
for a photon wavelength of 266 nm.

ø(t, r) ) ø1|J1/J(t, w1)|1/2 exp[-µ(t, w1)/2]A(t, w1) (32)

∫ dRdr |u(r1) F(R, r) )

∫ dtdw1 J(t, w1)|u(r1) F[R(t, w1), r(t, w1)] (33)

2894 J. Phys. Chem. A, Vol. 105, No. 12, 2001 Micha and Stodden



information on nuclear classical trajectories. The procedure
allows for phase interference, because it incorporates the
mechanical actions in the phase of integrands as one adds over
the time variable. The integration of differential equations
requires only knowledge of the initial conditions, so that there
is no need to search for those trajectories that would reconstruct
a given final state. Instead, one projects on the desired final
state.

The application to a model of CH3I photodissociation was
done for two purposes: illustration of the method, which is quite
simple in its numerical implementation, and a type of initial
variable representation insofar as it requires only choices of
initial conditions; and second for comparison with accurate
quantal calculations with the same potential surfaces. This gave,
overall, quite accurate branching ratios and good distributions
of final vibrational states for the predominant product species;
in effect, the figures for the partial cross sections, normalized
to a scale of 0.0-1.0, show deviations from accurate quantal
calculations of the order of 10% for most final vibrational states.
The largest deviation is for formation of I and CH3(V ) 0) at
266 nm, the most unfavorable case for a semiclassical treatment
insofar as the relative kinetic energy of the fragments is smaller
and the vibrational state is the lowest. The most likely way to
improve on this should be to start with a more accurate

semiclassical representation of theV ) 0 final state and to add
more initial values of the vibrational coordinater1. Applications
to similar polyatomic systems, such as ICN, could be done with
the same approach. It is encouraging that only a very small
number of trajectories (of the order of 1000) were needed to
obtain the transition integrals to the desired accuracy. Even if
a factor of 20 more trajectories might be needed to include
rotational motions, our approach provides an alternative to the
105 to 106 trajectories and Jacobians needed for the more
accurate calculations with initial value representations.

Perhaps the biggest advantage of the present SCE approach
is that it appears applicable to the dissociation of large
polyatomic with no modifications in the computational proce-
dure. It can deal with several vibrational degrees of freedom as
well as rotational ones, and it can also describe changes in the
conformation of the excited polyatomic. On the other hand, the
eikonal approximation can describe only processes that occur
in classically allowed regions of the effective potentialV(Q),
i.e., in regions accessible to trajectory bundles. It also restricts
the initial conditions to those allowed by the form of the
asymptotic wave functions, so that the initial positions must
fall within the classical turning points of the initial internal
motions. Physical quantities of interest are, however, sums over
many initial conditions, and errors due to exclusion of classical
forbidden regions are frequently small because only small
fractions of the trajectories are likely to originate in these regions
for most applications to photodesorption and collisional energy
transfer.
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